

LA-UR-21-23827

Approved for public release; distribution is unlimited.

Title: Geothermal Resource Analysis at Tohatchi hot springs, New Mexico

Author(s): Ahmmed, Bulbul

Vesselinov, Velimir Valentinov

Woods, Sam Singer, Suzanne Lake, Stanford

Intended for: Report

Issued: 2021-04-20

Geothermal Resource Analysis at Tohatchi Hot Springs, New Mexico

Bulbul Ahmmed and Velimir V. Vesselinov Los Alamos National Laboratory

Sam Woods, Suzanne Singer, Stanford Lake Tosidoh Group

Objective

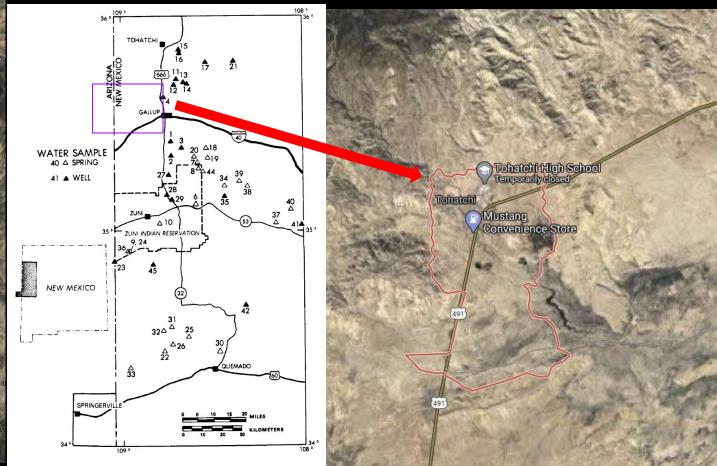
Improve the understanding of geothermal resource at Tohatchi Hot Springs, New Mexico using exploratory data analysis and machine learning (ML) methods

Methods and Approach

- 1. Analyze and process data from different data sources (including documents/reports provided by Tosidoh Group)
- Perform advanced ML data analyses using geological, geophysical, and geochemical datasets (using LANL-developed/patented ML methods)
- 3. Characterize geothermal source and governing mechanisms that is making the water hot For example, identify which data attributes are important to understand the heat source

Deliverable

A report of the findings and recommendations based on our ML analyses (will be provided to the Tosidoh Group at the completion of the project)

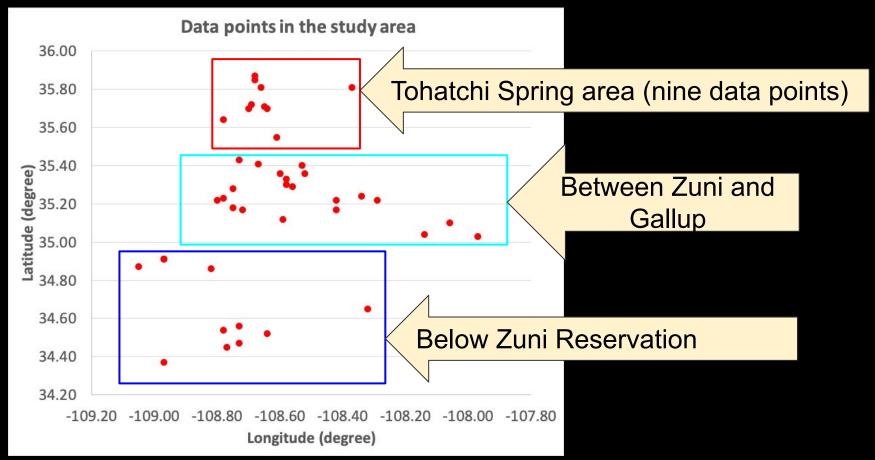

Existing report

Geothermal potential of west-central New Mexico from geochemical and thermal gradient data

D. Levitte and D.T. Gambill (1980)

Tohatchi Nazilni Reservation Springerville

Study Area


Data Summary (based on Report Review)

Geochemistry data (at 43 wells)
 pH, flow rate (missing values), major anions/cations, rock types

SiO₂, Fe, Mn, Ca, Mg, Na, K, Ba, Sr, B, Li, HCO₃, SO₄, Cl, F

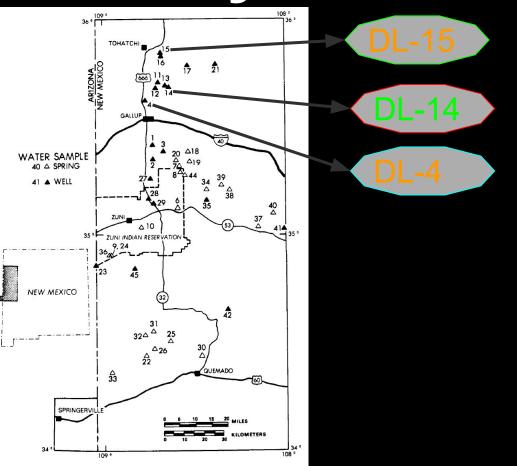
- 2. **Geothermometry** data (at 43 wells) Quartz water vapor, Na-K-Ca
- 3. Geothermal gradient (at 29 wells)

Study Area

Report Review: Hydrogeology

- Basaltic flows range between 27 Myr to 700 Myr
- Zuni uplift ranges between 29 to 48 km and has several northwest-trending faults
- No defined recharge areas and ground water flow directions
- Permeability is controlled by fractures and faults rather than rock (matrix) porosity and permeability
- Demonstrated by huge difference in water production among different wells/springs
- Warm springs are DL-9 and DL-24 or Rainbow and Sacred Springs with temperature of 22 and 21°C, respectively
- Warm springs are within 0.8 km at the Zuni Indian Reservation

Report Review: Hydrogeology


- Based on chemistry, water is meteoric
- Zuni Indian Reservation has a maximum geothermal gradient of 67°C/km
- The report suggests that the geothermal gradient is not hydrologically controlled
- East of Springerville, Arizona, the maximum geothermal gradients are between 76 to 138°C/km
- But the report also suggests that high geothermal gradients are possibly due to a magmatic water at depth reaching to the ground surface

Report Review: Hydrogeology

Two hypotheses:

- 1. Groundwater circulates from a shallow depth (~400 m) (e.g., shallow geothermal system, secondary fracture permeability effects)
- 2. Groundwater circulates from a greater depth (e.g., deep circulation of water, forced-convection geothermal systems)
 - However, the geothermal gradient is low 22°C/km
 - The low gradient does not suggest deep circulation
- The low gradient supports the first hypothesis

Study Area

Tohatchi Hydrogeology

- DL-14 is an artesian well drilled at 649 m depth;
 Temperature is 16.5°C
- Huge recharge area surrounding this well might be the cause of low temperature groundwater
- DL-4 has higher temperature/gradient (T=45°C, 91°C/km) than other wells in the vicinity
- This supports the second hypothesis
- However, water type is meteoric not connate or true thermal
- The report also describes that "the source of DL-4 and DL-15
 waters are from deep but boron and lithium ratios are low; therefore,
 water are meteoric"

This is a conundrum! We hope to resolve it using our ML analyses!

Report Review: Geothermal

- 1. Possible low-temperature geothermal reservoir between Gallup and Tohatchi below **Chinle**
- Springerville has high temperature gradient and possibly by circulation from depth or may be from shallow uranium deposits

(for more, please see a report by Arizona Bureau of Geology and Mineral Technology, 1980)

3. Based on existing data, Zuni Reservation may not be forecasted as a potential geothermal reservoir

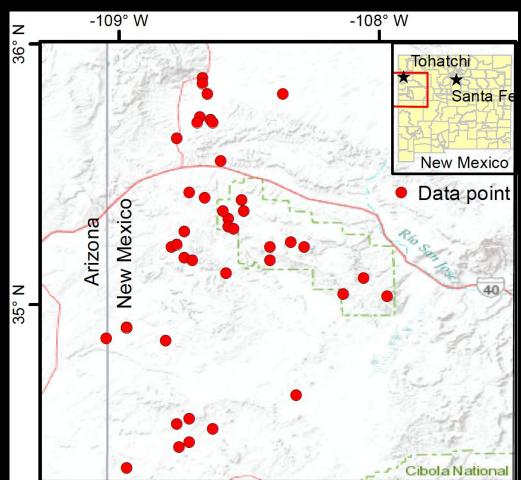
Conclusions and Next Steps

- Gallup-Tohatchi, Springerville, and Zuni Indian Reservation areas appear to be suitable for further exploration of hot dry rock (HDR) geothermal resources
- Require more geothermal gradient and water chemistry data for a robust analyses prediction

Next steps: Digitize, digest, and analyze the existing data using machine learning

Geothermal Resource Analysis at Tohatchi Hot Springs, New Mexico

Bulbul AhmmedVelimir V. Vesselinov, Maruti K. Mudunuru,
Richard Middleton
Los Alamos National Laboratory


Sam Woods, Suzanne Singer, Stanford Lake Tosidoh Group

Recap

Hypotheses:

- 1. Groundwater circulates from a shallow depth (~400 m) (e.g., shallow geothermal system, secondary fracture permeability effects)
- 2. Groundwater circulates from a greater depth (e.g., deep circulation of water, forced-convection geothermal systems)

Recap

- Reviewed a LANL geothermal report (Levitte and Gambill 1980)
- Gallup-Tohatchi,
 Springerville, and Zuni Indian
 Reservation areas appear to be suitable for further exploration of hot dry rock (HDR) geothermal resources
- Require more geothermal gradient and water chemistry data for a robust analyses prediction

Key Questions (defined by Tosidoh Group)

- 1. Why is water hot?
- 2. What kind of geothermal technology is appropriate in this area?
- 3. Can we use it for generating H₂, heating, and build a greenhouse system?
- 4. How big is the reservoir?
- 5. How much water is there?
- 6. Will it finish up or is it sustainable for long-term production?

Key Questions/Answers

- 1. Why is water hot? hot magma at depth
- 2. What kind of geothermal technology is appropriate in this area? various
- 3. Can we use it for generating H₂, heating, and build a greenhouse system? Yes
- 4. How big is the reservoir? Will explain in later slides
- 5. How much water is there? Will explain in later slides
- 6. Will it finish up? Will explain in later slides

How can we utilize the hot water?

- 1. Generating H₂?
- 2. Domestic/space heating?
- 3. Heating greenhouse system for agriculture?
- 4. Power generation?
- 5. Spa industry?

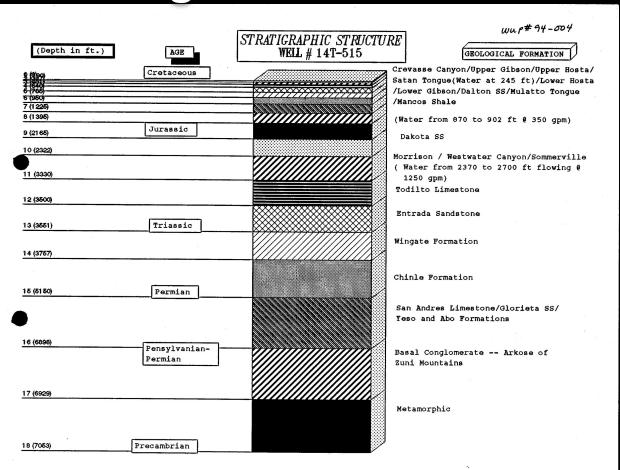
Geothermal Facilities in NM

Agriculture/Greenhouse	5
Domestic/Space heating	3
Transportation/Producing H ₂	0
Electricity/Power plant	1
Entertainment/Spa	14

Possible Geothermal Facilities

Facility	Yes/No
Agriculture/greenhouse	√ Y
Domestic/space heating	√ Y
Transportation/H ₂ extraction	√ Y
Spa	√ Y
Power plant	X No

How Big is the Reservoir?


Well 14T-515 (drilled in 1954) is located at 5 mile NE of Tohatchi Lat: 355304 Long: 1084006 Screen: Not known

> Water Temperature: 37 °C pH 8.41 Flow 508 gpm Specific Conductivity 655 S/micro-meter (?)

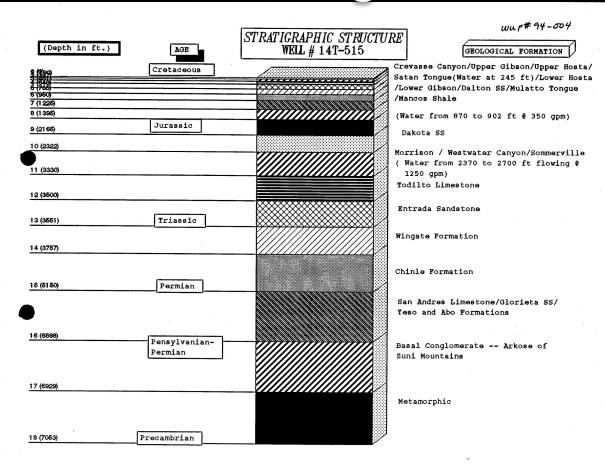
Total Reservoir Area: 31.97 sq. Miles

In 1966, 25c per 1,000 gallons for surface water while 30c per 1000 gallons for well water

How Big is the Reservoir?

rt - end (ft) Formation

Depth start - end (ft)	Formation	Aquifer
0 - 190	Crevasse Canyon	Upper Gibson Coal Member
190 - 347	,,	Upper Hosta SS Tonge
347 - 451	,,	Satan Tongue of Mancos
451 - 640	,,	Lower Hosta Tongue SS
640 - 785	,,	Lower Gibson Coal Member
785 - 950	"	Dalton Sandstone Member
950 - 1225	,,	Malato Tongue of Mancos
1225 - 1395	Gallup Sandstone	,,
1395 - 2165	Mancos Shale	,,
2165 - 2322	Dakota Sandstone	,,


Well Record

PreC-Metamorphics

6829 - 7053

Depth start - end (ft)	Formation	Aquifer
2322 - 3330	Morrison Formation	Westwater Canyon Member
3330 - 3500	, ,	Todilto Limestone
3500 - 3551	,,	Entrada Sandstone
3551 - 3757	Wingate Formation	
3757 - 5150	Chinle Formation	
5150 - 6898	Permian System	
6898 - 6929	Penn-Perm System	

How Big is the Reservoir?

First Aquifer

Aquifer unit 8
Mostly shale
Depth 870 - 902 ft
Thickness: 32 ft

Flowrate: 350 gpm

Second Aquifer

Aquifer unit 11
Morrison Formation
(sandstone and shale)

Depth: 2,370 - 2,700 ft

Thickness: 330 ft

Flowrate: 1,250 gpm

Conclusions

Hypotheses:

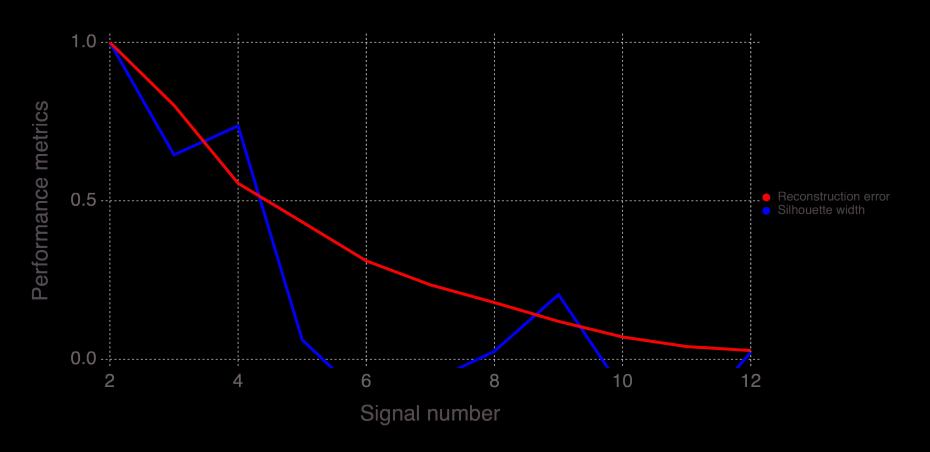
- 1. Groundwater circulates from a shallow depth (~400 m) (e.g., shallow geothermal system, secondary fracture permeability effects)
- Groundwater circulates from a greater depth
 (e.g., deep circulation of water, forced-convection geothermal systems)
 - Low geothermal gradient supports the first hypothesis
 - Also, this is a mostly porous system (not fractured)
 - Combination of preceding two factors makes this a sustainable system for long-term production without requiring to build a special system to bring resources to the surface

Conclusions

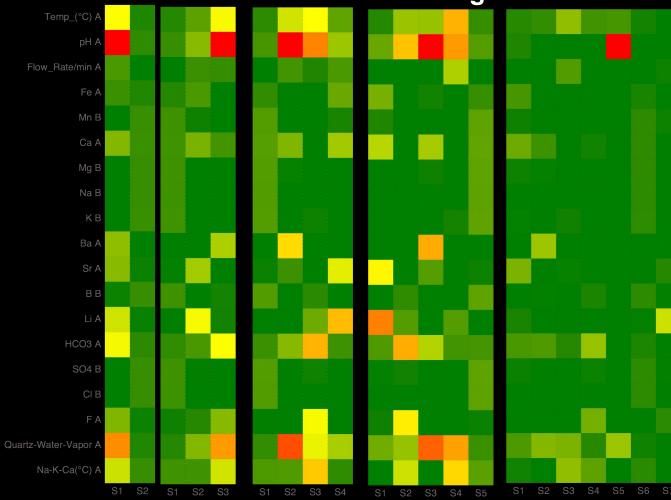
- Information that we do not have: porosity, recharge area, and recharge rate
- Above information would help us to provide a better estimation
- However, based on aquifer thickness and reservoir area, we can say that it is a substantially large aquifer / reservoir

- 1. How big is the reservoir? It is substantially large for long-term production
- 2. How much water is there? Aquifer storage is substantial
- 3. Will it finish up? Most probably no; still aquifer recharge rates are unknown

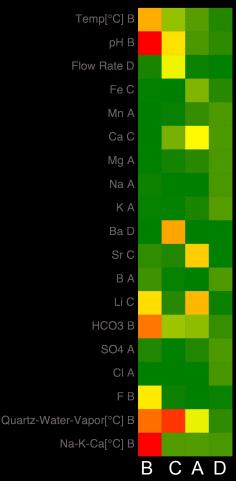
Future Work


- Generate temperature and heat flow contours
- Reserve estimation using standard porosity for sandstone, shale, and limestone
- Develop a preliminary prospectivity map based on the available information showing potential locations for geothermal exploration / production

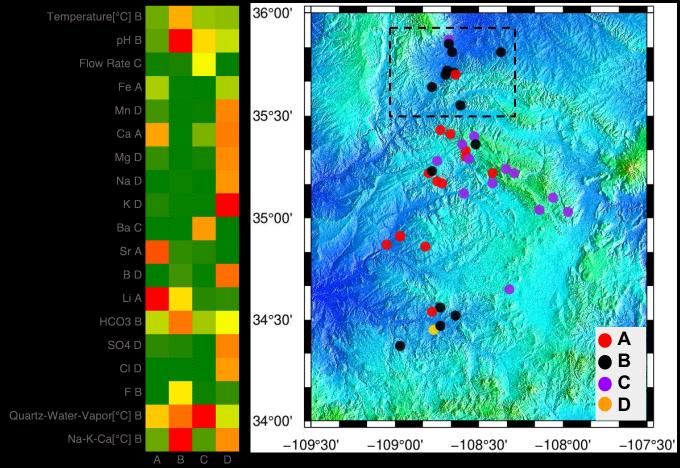
Geothermal Resource Analysis at Tohatchi Hot Springs, New Mexico


Bulbul AhmmedVelimir V. Vesselinov, Maruti K. Mudunuru,
Richard Middleton
Los Alamos National Laboratory

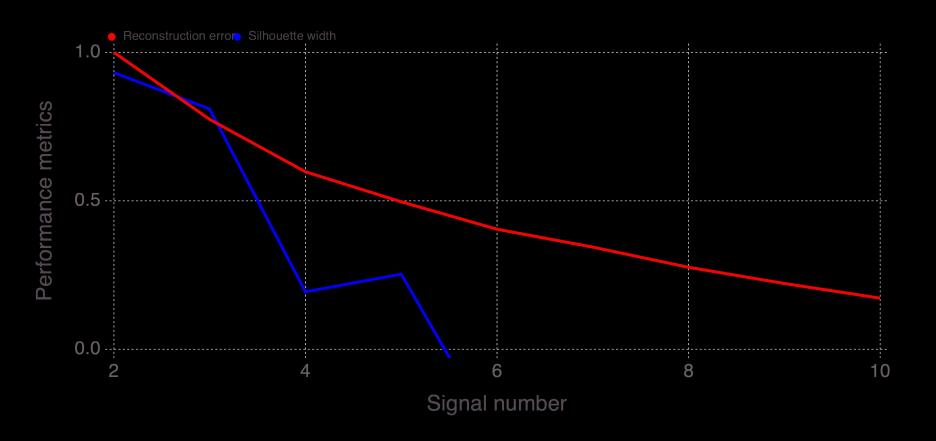
Sam Woods, Suzanne Singer, Stanford Lake Tosidoh Group


Machine Learning: NMFk

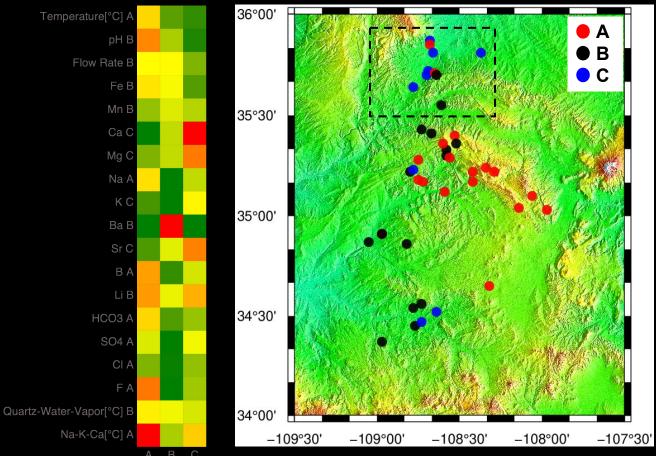
Hidden Geothermal Signals

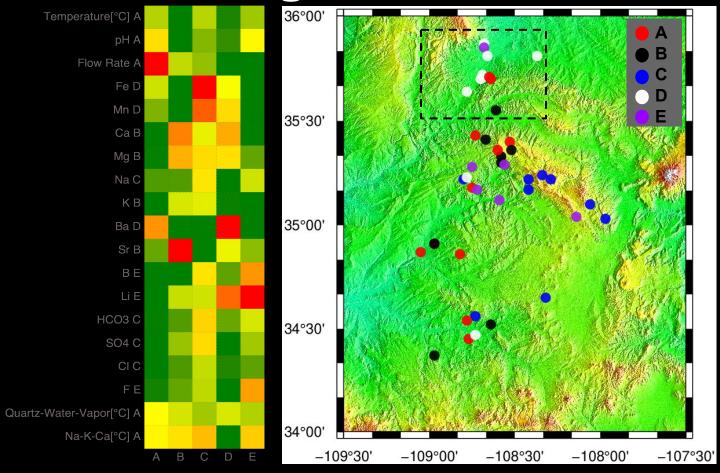


Hidden Geothermal Signals

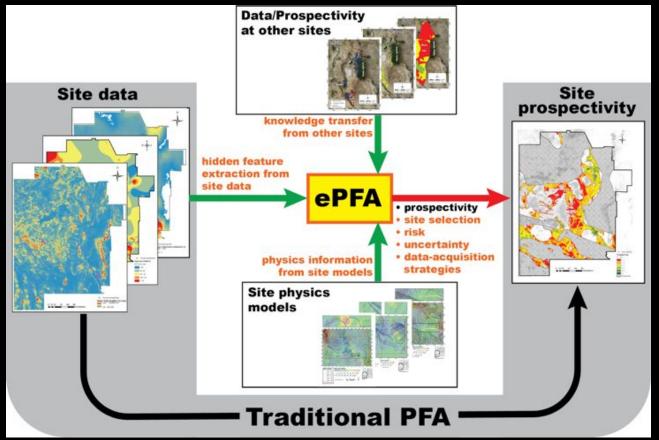


- Signal B represents hightemperature resources
- **Signal C** represents low-temperature resources
- Dominant attributes of Signal B are pH, Li, HCO3, and F ions, quartz and Na-K-Ca geothermometers


Preliminary Prospectivity Map


Log normalized

Log normalized


Log normalized

Future Work

- Develop a groundwater model to compute water flow direction, water budget, etc.
- Reserve estimation using standard porosity for sandstone, shale, and limestone
- Merge SWNM data to Tosidoh data
- Make an improved prospectivity map using the enhanced play fairway analysis method

enhanced Play Fairway Analysis: ePFA

Application of ePFA in SWNM

Thank you.

